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ON ∗-SEMIDERIVATIONS AND COMMUTATIVITY OF

PRIME ∗-RINGS

Kyung Ho Kim *

Abstract. In this paper, we introduce the notion of a ∗-semideriv-
ation on ∗-rings, and we try to extend some results for derivations
of rings or near-rings to a more general case for ∗-semiderivations
of prime ∗-rings.

1. Introduction

Over the last few decades, several authors have investigated the rela-
tionship between the commutativity of the ring R and certain specific
types of derivations of R. The first result in this direction is due to E.
C. Posner [9] who proved that if a ring R admits a nonzero derivation d
such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. This
result was subsequently refined and extended by a number of authors. In
[6], Bresar and Vuckman showed that a prime ring must be commutative
if it admits a nonzero left derivation. Recently, many authors have ob-
tained commutativity theorems for prime and semiprime rings admitting
derivation and generalized derivation. Furthermore, Bresar and Vukman
[5] studied the notions of a ∗-derivation and a Jordan ∗-derivation of R.
In this paper, we introduce the notion of a ∗-semiderivation on ∗-rings,
and we try to extend some results for derivations of rings or near-rings
to a more general case for ∗-semiderivations of prime ∗-rings.

2. Preliminaries

Let R be a ring. Then R is prime if aRb = {0} implies a = 0
or b = 0. An additive mapping d : R → R is called a derivation if
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d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. An additive mapping
x → x∗ of R into itself is called an involution if the following conditions
are satisfied;

(i) (xy)∗ = y∗x∗ (ii) (x∗)∗ = x for all x, y ∈ R.

A ring equipped with an involution is called an ∗-ring or ring with in-
volution. Let R be a ∗-ring. An additive mapping d : R → R is called
an ∗-derivation if d(xy) = d(x)y∗ + xd(y) holds for all x, y ∈ R.

Definition 2.1. Let R be a prime ∗-ring. An additive mapping
d : R → R is called a ∗-semiderivation associated with a surjective
function g : R → R if

(i) d(xy) = d(x)y∗ + g(x)d(y) = d(x)g(y) + x∗d(y),
(ii) d(g(x)) = g(d(x)) for all x, y ∈ R.

Definition 2.2. Let R be a prime ∗-ring. An additive mapping d :
R → R is called a reverse ∗-semiderivation associated with a surjective
function g : R → R if

(i) d(xy) = d(y)x∗ + g(y)d(x) = d(y)g(x) + y∗d(x),
(ii) d(g(x)) = g(d(x)) for all x, y ∈ R.

3. ∗-semiderivations and commutativity of prime ∗-rings

Lemma 3.1. Let R be a prime ∗-ring and let d be a nonzero ∗-semider-
ivation associated with g and a ∈ R. If ad(R) = 0, then a = 0.

Proof. By hypothesis, we have

(3.1) ad(xy) = 0 for all x, y ∈ R,

which implies that ad(x)y∗ + ag(x)d(y) = 0 for all x, y ∈ R. By the
hypothesis, we have ag(x)d(y) = 0 for all x, y ∈ R. Since g is onto, we
get axd(y) = 0 for all x, y ∈ R, which implies that aRd(y) = 0 for all
y ∈ R. Since R is prime and d ̸= 0, we have a = 0.

Theorem 3.2. Let R be a prime ∗-ring. If R admits an ∗-semiderivat-
ion d associated with g such that d([x, y]) = 0 for all x, y ∈ R, then d = 0
or R is commutative.

Proof. By hypothesis, we have

(3.2) d([x, y]) = 0 for all x, y ∈ R.

Replacing y by yx in (2), we have d([x, yx]) = d([x, y]x) = d([x, y])x∗ +
g([x, y])d(x) = 0 for all x, y ∈ R. By the hypothesis, we get g([x, y])d(x) =
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0 for all x, y ∈ R. Since g is onto, we have [x, y]d(x) = 0 for all
x, y ∈ R. Taking zy instead of y with z ∈ R in this relation, we obtain
[x, z]yd(x) = 0 for all x, y, z ∈ R. This implies that [x, z]Rd(x) = {0}
for all x, z ∈ R. Since R is prime, we have [x, z] = 0 or d(x) = 0 for all
x, z ∈ R. LetK = {x ∈ R|d(x) = 0} and L = {x ∈ R|[x, z] = 0, ∀z ∈ R}.
Then K and L are both additive subgroups and K∪L = R, but (R,+) is
not union of two its proper subgroups, which implies that either K = R
or L = R. In the former case, we have d(x) = 0 for all x ∈ R, that is,
d = 0. If L = R, then we get [x, z] = 0 for all x, y ∈ R, which implies
that R is commutative.

Theorem 3.3. Let R be a prime ∗-ring. If R admits an ∗-semideriva-
tion d associated with g such that d(x ◦ y) = 0 for all x, y ∈ R, then
d = 0 or R is commutative.

Proof. By hypothesis, we have

(3.3) d(x ◦ y) = 0 for all x, y ∈ R.

Replacing y by yx in (3), we have d(x ◦ yx) = d((x ◦ y)x) = d(x ◦
y)x∗ + g(x ◦ y)d(x) = 0 for all x, y ∈ R. By the hypothesis, we get
g(x ◦ y)d(x) = 0 for all x, y ∈ R. Since g is onto, we have (x ◦ y)d(x) = 0
for all x, y ∈ R. Taking yx instead of y in this relation, we obtain
(x ◦ y)xd(x) = 0 for all x, y ∈ R. This implies that (x ◦ y)Rd(x) = {0}
for all x, y ∈ R. Since R is prime, we have x ◦ y = 0 or d(x) = 0 for all
x, y ∈ R. Let K = {x ∈ R|d(x) = 0} and L = {x ∈ R|x◦y = 0,∀y ∈ R}.
Then K and L are both additive subgroups and K∪L = R, but (R,+) is
not union of two its proper subgroups, which implies that either K = R
or L = R. In the former case, we have d(x) = 0 for all x ∈ R, that is,
d = 0. If L = M, then we get x◦y = 0 for all x, y ∈ R, which implies that
xy = −yx for all x, y ∈ R. Again, replacing x by xz in the last relation,
we have xzy = −yxz = xyz, that is, x[z, y] = 0 for all x, y, z ∈ R. This
implies that R[z, y] = {0} for all x, z ∈ R. Hence tR[z, y] = {0} for all
0 ̸= t, y, z ∈ R. Since R is prime, we have [z, y] = 0 for all y, z ∈ R,
which implies that R is commutative.

Theorem 3.4. Let R be a prime ∗-ring. If R admits an ∗-semideriva-
tion d associated with g such that [d(x), y] = 0 for all x, y ∈ R, then
d = 0 or R is commutative.

Proof. By hypothesis, we have

(3.4) [d(x), y] = 0 for all x, y ∈ R.
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Replacing x by xz in (4) and using (4), we have

(3.5)

0 = [d(xz), y] = [d(x)z∗ + g(x)d(z), y]

= [d(x)z∗, y] + [g(x)d(z), y]

= d(x)[z∗, y] + [d(x), y]z∗ + g(x)[d(z), y] + [g(x), y]d(z)

= d(x)[z∗, y] + [g(x), y]d(z)

for all x, y, z ∈ R. Taking g(x) instead of y in (5), we have d(x)[z∗, g(x)] =
0 for all x, z ∈ R. Substituting z∗ for z in this relation, we get d(x)[z, g(x)] =
0 for all x, z ∈ R. Again, replacing z by zy in the last relation, we obtain
d(x)z[y, g(x)] = 0 for all x, y, z ∈ R. Hence d(x)R[y, g(x)] = 0 for all
x, y ∈ R. Since R is prime, we have d(x) = 0 or [y, g(x)] = 0 for all
x, y ∈ R. Let

K = {x ∈ R|d(x) = 0} and L = {x ∈ R|[y, g(x)] = 0,∀y ∈ R}.

Then K and L are both additive subgroups and K∪L = R, but (R,+) is
not union of two its proper subgroups, which implies that either K = R
or L = R. In the former case, we have d(x) = 0 for all x ∈ R, that
is, d = 0. If L = R, then we get [y, g(x)] = 0 for all x, y ∈ R. Since
g is onto, we have [y, x] = 0 for all x, y ∈ R, which implies that R is
commutative.

Theorem 3.5. Let R be a prime ∗-ring. If R admits an ∗-semideriva-
tion d associated with g such that d(x) ◦ y = 0 for all x, y ∈ R, then
d = 0 or R is commutative.

Proof. By hypothesis, we have

(3.6) d(x) ◦ y = 0 for all x, y ∈ R.

Replacing x by xz in (6) and using (6), we have

(3.7)

0 = d(xz) ◦ y = (d(x)z∗ + y + g(x)d(z)) ◦ y
= d(x)z∗ ◦ y + g(x)d(z) ◦ y
= (d(x) ◦ y)z∗ + d(x)[z∗, y] + g(x)(d(z) ◦ y)− [g(x), y]d(z)

= d(x)[z∗, y]− [g(x), y]d(z)

for all x, y, z ∈ R. Taking g(x) instead of y in (7), we have d(x)[z∗, g(x)] =
0 for all x, z ∈ R. Substituting z∗ for y in this relation, we get d(x)[z, g(x)] =
0 for all x, z ∈ R. Again, replacing z by zy in the last relation, we ob-
tain d(x)z[y, g(x)] = 0 for all x, y, z ∈ R. Hence d(x)R[y, g(x)] = 0 for
all x, y ∈ R. Since R is prime, we have d(x) = 0 or [y, g(x)] = 0 for
all x, y ∈ R. Let K = {x ∈ R|d(x) = 0} and L = {x ∈ R|[y, g(x)] =
0, ∀y ∈ R}. Then K and L are both additive subgroups and K ∪L = R,
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but (R,+) is not union of two its proper subgroups, which implies that
either K = R or L = R. In the former case, we have d(x) = 0 for all
x ∈ R, that is, d = 0. If L = R, then we get [y, g(x)] = 0 for all x, y ∈ R.
Since g is onto, we have [y, x] = 0 for all x, y ∈ R, which implies that R
is commutative.

Theorem 3.6. LetR be a prime ∗-ring and let d be an ∗-semiderivation
associated with g such that g is an automorphism of R. If d(xy) =
d(x)d(y) for all x, y ∈ R, then d = 0.

Proof. For any x, y ∈ R, we have

(3.8) d(xy) = d(x)y∗ + g(x)d(y) = d(x)d(y) for all x, y ∈ R.

Replacing x by xw in (8), we obtain d(xw)y∗ + g(xw)d(y) = d(xw)d(y)
for all x, y, w ∈ R. Hence d(x)d(w)y∗ + g(x)g(w)d(y) = d(x)d(w)d(y) =
d(x)d(wy) for all x, y, w ∈ R, and hence d(x)d(w)y∗ + g(x)g(w)d(y) =
d(x)d(w)y∗ + d(x)g(w)d(y) for all x, y, w ∈ R. This implies that (g(x)−
d(x))g(w)d(y) = 0 for all x, y, w ∈ R. Since R is prime and g is an
automorphism of R, we have d(x) = g(x) or d(y) = 0 for all x, y ∈ R.
Let us assume that d(x) = g(x) for all x ∈ R. Substituting xy for x in
the last relation, we have d(x)y∗ + g(x)d(y) = g(x)g(y) = g(x)d(y) for
all x, y ∈ R, that is, d(x)g(y∗) = 0 for all x, y ∈ R. Taking y∗ instead of
y in this relation, we have d(x)g(y) = 0 for all x, y ∈ R. Again, replacing
y by g−1(y) in the last relation, we have d(x)y = 0, which implies that
d(x)R = {0} for all x ∈ R. Thus we obtain d(x) = 0 for all x ∈ R in any
case.

Theorem 3.7. LetR be a prime ∗-ring and let d be an ∗-semiderivation
associated with g. If d(xy) = d(y)d(x) for all x, y ∈ R and d(x) ̸= x∗ for
all x ∈ R, then d = 0.

Proof. For any x, y ∈ R, we have

(3.9) d(xy) = d(x)y∗ + g(x)d(y) = d(y)d(x), for all x, y ∈ R.

Replacing y by xy in (9), we obtain d(x)(xy)∗ + g(x)d(xy) = d(xy)d(x)
for all x, y ∈ R. Hence we have

d(x)y∗x∗ + g(x)d(y)d(x) = d(x)y∗d(x) + g(x)d(y)d(x)

for all x, y ∈ R, and hence d(x)y∗x∗ = d(x)y∗d(x) for all x, y ∈ R. This
implies that d(x)y∗(x∗ − d(x)) = 0 for all x, y ∈ R. Substituting y∗ for
y in the last relation, we get d(x)y(x∗ − d(x)) = 0 for all x, y ∈ R. That
is, d(x)R(x∗ − d(x)) = {0} for all x ∈ R. Since R is prime, we have
d(x) = x∗ or d(x) = 0 for all x ∈ R. But d(x) ̸= x∗ for all x ∈ R, and so
d(x) = 0 for all x ∈ R.
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Theorem 3.8. LetR be a prime ∗-ring and let d be an ∗-semiderivation
associated with g such that g(xy) = g(x)g(y) for all x, y ∈ R. Then d = 0
or R is commutative.

Proof. By hypothesis, we have

(3.10) d(xy) = d(x)y∗ + g(x)d(y), for all x, y ∈ R.

Replacing y by yz in (10), we have d(xyz) = d(x)(yz)∗ + g(x)d(yz) for
all x, y, z ∈ R. Hence we get

(3.11)
d(xyz) = d(x)z∗y∗ + g(x)(d(y)z∗ + g(y)d(z))

= d(x)z∗y∗ + g(x)d(y)z∗ + g(x)g(y)d(z)

for all x, y, z ∈ R. On the other hand, we get

d(xyz) = d(xy(z))

= d(xy)z∗ + g(xy)d(z)(3.12)

= d(x)y∗z∗ + g(x)d(y)z∗ + g(x)g(y)d(z)

for all x, y, z ∈ R. Comparing (11) and (12), we have d(x)[z∗, y∗] = 0 for
all x, y ∈ R. Replacing z by z∗ and y by y∗ in this relation, we obtain

(3.13) d(x)[z, y] = 0 for all x, y, z ∈ R.

Substituting y by yt with t ∈ R in (13), we have

0 = d(x)[z, yt] = d(x)[z, y]t+ d(x)y[z, t]

= d(x)y[z, t]

for every t, x, y, z ∈ R. Hence d(x)R[z, t] = {0} for every t, x, z ∈ R.
Since R is prime, we have d(x) = 0 or [z, t] = 0 for all t, x, z ∈ R. Let
K = {x ∈ R|d(x) = 0} and L = {z ∈ R|[z, t] = 0, ∀t ∈ R}. Then K
and L are both additive subgroups and K ∪ L = R, but (R,+) is not
union of two its proper subgroups, which implies that either K = R or
L = R. In the former case, we have d = 0. If L = R, then [z, t] = 0 for
all t, z ∈ R, which implies that R is commutative.

Theorem 3.9. Let R be a prime ∗-ring and let d be a reverse ∗-
semiderivation associated with g such that g(xy) = g(x)g(y) for all x, y ∈
R. Then [d(x), z] = 0 for all x, z ∈ R or d = 0.

Proof. By hypothesis, we have

(3.14) d(xy) = d(y)x∗ + g(y)d(x) for all x, y ∈ R.
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Replacing x by xz in (14), we have

(3.15)
d(xzy) = d(y)z∗x∗ + g(y)(d(z)x∗ + g(z)d(x))

= d(y)z∗x∗ + g(y)d(z)x∗ + g(y)g(z)d(x)

for all x, y, z ∈ R. On the other hand,

d(xzy) = d(x(zy)) = d(zy)x∗ + g(zy)d(x)

= d(y)z∗x∗ + g(y)d(z)x∗ + g(z)g(y)d(x)(3.16)

= d(y)z∗x∗ + g(y)d(z)x∗ + g(z)g(y)d(x)

Comparing (15) with (16), we get [g(z), g(y)]d(x) for all x, y, z ∈ R.
Since g is onto, we obtain [z, y]d(x) for all x, z ∈ R. Again, replacing y
by d(x)z in this relation, we have

0 = [d(x)z, z]d(x)

= d(x)[z, z]d(x) + [d(x), z]zd(x)(3.17)

= [d(x), z]zd(x).

Since R is prime, we can get either [d(x), z] = 0 or d(x) = 0 for all
x, z ∈ R.

Theorem 3.10. LetR be a prime ∗-ring and let d be an ∗-semiderivation
associated with g. If d(x) ◦ g(y) = 0 for all x, y ∈ R, then d = 0 or R is
commutative.

Proof. By hypothesis, we have

(3.18) d(x) ◦ g(y) = 0 for all x, y ∈ R.

Replacing x by yx in (18), we have

(3.19)

0 = d(yx) ◦ g(y)
= (d(y)x∗ + g(y)d(x)) ◦ g(y)
= d(y)x∗ ◦ g(y) + g(y)d(x) ◦ g(y)
= (d(y) ◦ g(y))x∗ + d(y)[x∗, g(y)] + g(y)(d(x) ◦ g(y))

− [g(y), g(y)]d(x)

= d(y)[x∗, g(y)]

for every x, y ∈ R. Substituting x∗ for x in (19), we get d(y)[x, g(y)] = 0
for all x, y ∈ R. Taking xz instead of x in this relation, we obtain
d(y)x[z, g(y)] = 0 for all x, y, z ∈ R. This implies that d(y)R[z, g(y)] =
{0} for all y, z ∈ R. Since R is prime, we have d(y) = 0 or [z, g(y)] = 0
for all y, z ∈ R. Let K = {y ∈ R|d(y) = 0} and L = {y ∈ R|[z, g(y)] =
0,∀z ∈ R}. Then K and L are both additive subgroups and K ∪L = R,
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but (R,+) is not union of two its proper subgroups, which implies that
either K = R or L = R. In the former case, we have d = 0. If L = R,
then [z, g(y)] = 0 for all y, z ∈ R. Since g is onto, we get [z, y] = 0 for
all y, z ∈ R, which implies that R is commutative.

Theorem 3.11. Let R be a prime ∗-ring and let d be an ∗-semideriva-
tion associated with g. If [d(x), g(y)] = 0 for all x, y ∈ R, then d = 0 or
R is commutative.

Proof. By hypothesis, we have

(3.20) [d(x), g(y)] = 0 for all x, y ∈ R.

Replacing x by yx in (18), we have

0 = [d(yx), g(y)]

= [d(y)x∗ + g(y)d(x), g(y)]

= [d(y)x∗, g(y)] + [g(y)d(x), g(y)](3.21)

= d(y)[x∗, g(y)] + [d(y), g(y)]x∗ + g(y)[d(x), g(y)]

+ [g(y), g(y)]d(x)

= d(y)[x∗, g(y)]

for every x, y ∈ R. Substituting x∗ for x in (21), we get d(y)[x, g(y)] = 0
for all x, y ∈ R. Taking xz instead of x in this relation, we obtain
d(y)x[z, g(y)] = 0 for all x, y, z ∈ R. This implies that d(y)R[z, g(y)] =
{0} for all y, z ∈ R. Since R is prime, we have d(y) = 0 or [z, g(y)] = 0
for all y, z ∈ R. Let K = {y ∈ R|d(y) = 0} and L = {y ∈ R|[z, g(y)] =
0,∀z ∈ R}. Then K and L are both additive subgroups and K ∪L = R,
but (R,+) is not union of two its proper subgroups, which implies that
either K = R or L = R. In the former case, we have d = 0. If L = R,
then [z, g(y)] = 0 for all y, z ∈ R. Since g is onto, we get [z, y] = 0 for
all y, z ∈ R, which implies that R is commutative.
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